
Digital Object Identifier (DOI) 10.1007/s100520100677
Eur. Phys. J. C 20, 271–281 (2001) THE EUROPEAN

PHYSICAL JOURNAL C

Spin-dependent structure functions of real and virtual photons
M. Glück, E. Reya, C. Sieg

Universität Dortmund, Institut für Physik, 44221 Dortmund, Germany

Received: 16 March 2001 /
Published online: 18 May 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. The implications of the positivity constraint, |gγ(P2)
1 (x, Q2)| ≤ F

γ(P2)
1 (x, Q2), on the presently

unknown spin–dependent structure function g
γ(P2)
1 (x, Q2) of real and virtual photons are studied at

scales Q2 � P 2 where longitudinally polarized photons dominate physically relevant cross sections. In
particular it is shown how to implement the physical constraints of positivity and continuity at P 2 = 0
in NLO calculations which afford a nontrivial choice of suitable (DIS) factorization schemes related to gγ

1
and F γ

1 and appropriate boundary conditions for the polarized parton distributions of real and virtual
photons. The predictions of two extreme ‘maximal’ and ‘minimal’ saturation scenarios are presented and
compared with results obtained within the framework of a simple quark ‘box’ calculation expected to
yield reasonable estimates in the not too small regions of x and P 2.

1 Introduction

The structure functions of photons with momentum p and
virtuality P 2 = −p2 probed at a scale Q2 >∼ 1 GeV2 and
Q2 � P 2, i.e. in the ‘Bjorken limit’, can be described
in terms of photonic parton distributions. These spin–
[in]dependent parton distributions of γ(P 2), henceforth
denoted by

[
fγ(P 2)(x,Q2)

]
and ∆fγ(P 2)(x,Q2) with f =

q, q̄, g and q = u, d, s, provide the dominant, lowest–twist,
contributions to the structure functions

[
F

γ(P 2)
1,2 (x,Q2)

]
and gγ(P 2)

1 (x,Q2) in [un]polarized deep inelastic ep colli-
sions.
One expects, of course, a unified description of real

(P 2 = 0) and virtual (P 2 �= 0) photons in the sense
of continuity of all the physical predictions at P 2 = 0.
It turns out, however, that the so–called ‘direct’ contri-
bution to the structure functions due to the subprocess
γ∗(Q2)γ(P 2) → qq̄ which arises at the next–to–leading
order (NLO) analysis of F γ(P 2)

1,2 and gγ(P 2)
1 is discontinu-

ous at P 2 = 0, thus violating the basic continuity demand.
It was pointed out in [1] that the physically compelling

continuity at P 2 = 0 is facilitated by treating the direct–
photon contribution at P 2 �= 0 to be the same as for a real
on–shell (P 2 = 0) photon. As a logical consequence of this
approach to the continuity demand it is mandatory to con-
sider the direct contribution of the virtual photon to any
deep inelastic scattering (DIS) process as if it was real. In
[1] the consequences of this approach to spin–independent
DIS processes were presented. The present paper extends
this study to the spin–dependent DIS processes.

In Sect. 2 we present some consequences of our uni-
fied approach as reflected by the spin–dependent structure
function gγ(P 2)

1 (x,Q2) characterizing the spin–dependent
deep–inelastic inclusive γ∗(Q2)γ(P 2) → hadrons scatter-
ing process accessible in longitudinally polarized e+e−
annihilations. Here the various possible (input) bound-
ary conditions for the polarized parton distributions and
structure functions of longitudinally polarized real and
virtual photons are discussed and presented together with
their formal analytic solutions of the inhomogeneous
renormalization group (RG) Q2–evolution equations. Var-
ious illustrative quantitative expectations are presented in
Sect. 3. These QCD resummed RG–improved calculations
are compared in Sect. 4 with the predictions of the stan-
dard non–resummed ‘naive’ quark–parton model (QPM)
QED ‘box’ approach. In particular, the relevance of the
polarized gluonic photon content, the typical RG–
improved QCD ingredient, is studied within this context.
Finally, our conclusions are summarized in Sect. 5.

2 g
γ(P 2)
1 (x, Q2)

and the associated parton distributions
of polarized real and virtual photons

The flux of (longitudinally) polarized virtual photons pro-
duced by the the bremsstrahlung process of high energy
electrons e(k) → e(k′) + γ(p), P 2 ≡ −p2 = −(k′ − k)2, at
e+e− or ep colliders is given by [2]

∆fγ(P 2)/e(y) =
α

2π

[
1− (1− y)2

y

1
P 2 +

2m2
ey

2

P 4

]
(2.1)
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where y = Eγ/Ee and α � 1/137. The real (P � 0) pho-
tons usually considered are those whose virtuality is in
reality very small, i.e. of order P 2

min = O(m2
e) or, experi-

mentally, at least P 2 < 10−2 GeV2 which is the case for
the bulk of produced photons in untagged or antitagging
experiments. On the other hand, a sizeable finite virtuality
is achieved by tagging of the outgoing electron at the pho-
ton producing vertex e → eγ. Whenever these virtual pho-
tons, with their virtuality being entirely taken care of by
the flux factor in (2.1), are probed at a scaleQ2 � P 2 they
may be considered as real photons, which means that cross
sections of partonic subprocesses involving γ(P 2) should
be calculated as if P 2 = 0 (partly due to the suppression of
any additional terms). Furthermore, the polarized parton
distributions ∆fγ(P 2)(x,Q2) of the virtual photon obey
the same Q2 evolution, i.e. renormalization group (RG),
equations as the real photon γ ≡ γ(P 2 = 0) distributions
∆fγ(x,Q2) and the only difference between them resides
in the different boundary conditions. This concept is sim-
ilar to the one suggested and developed in [1] for unpo-
larized photons which, as emphasized in the Introduction,
follows from the basic continuity demand at P 2 = 0.
Following the situation of protons [3] and unpolarized

photons [1], the structure function of polarized photons
g

γ(P 2)
1 (x,Q2) will be decomposed into gγ(P 2)

1,� due to the

light (massless) u, d, s partons, and gγ(P 2)
1,h due to the heavy

h = c, b, . . . quarks whose contributions are calculated in
fixed order of perturbation theory which are known and
unproblematic due to the finite mh �= 0 (we shall come
back to this point at the end of this Section). The main
issue of this paper resides of course in gγ(P 2)

1,� which, up to
NLO(MS), is given by the following expression:

g
γ(P 2)
1,� (x,Q2)

=
1
2

∑
q=u,d,s

e2q

{
∆qγ(P

2)(x,Q2) +∆q̄ γ(P 2)(x,Q2)

+
αs(Q2)
2π

[
∆Cq ⊗∆(q + q̄)γ(P 2)

+2∆Cg ⊗∆gγ(P 2)
]
+ e2q

α

π
∆Cγ(x)

}
(2.2)

where ⊗ denotes the usual convolution integral. Here,
∆q̄ γ(P 2) = ∆qγ(P

2) and ∆gγ(P 2) provide the so–called
‘resolved’ contribution of γ(P 2) to gγ(P 2)

1,� with the usual
hadronic polarized Wilson coefficient functions in the con-
ventional MS factorization scheme given by [4,5]

∆Cq(x) =
4
3

[
(1 + x2)

(
ln(1− x)
1− x

)
+

− 3
2

1
(1− x)+

−1 + x
2

1− x lnx+ 2 + x−
(
9
2
+
π2

3

)
δ(1− x)

]

∆Cg(x) =
1
2

[
(2x− 1)

(
ln
1− x
x

− 1
)
+ 2(1− x)

]
. (2.3)

The aforementioned ‘direct’ contribution is provided by
the ∆Cγ(x) term in (2.2) which has to be calculated for
real photons γ ≡ γ(P 2 = 0), as follows from the continuity
condition, in the polarized ‘box’ subprocess γ∗(Q2)γ →
qq̄. Thus ∆Cγ can be easily obtained from ∆Cg in (2.3)
which is also derived for a massless on–shell gluon in the
polarized subprocess γ∗(Q2)g → qq̄:

∆Cγ(x) =
3

(1/2)
∆Cg(x)

= 3
[
(2x− 1)

(
ln
1− x
x

− 1
)
+ 2(1− x)

]
. (2.4)

The NLO coefficient functions ∆Cq,g,γ are obviously
factorization scheme dependent and we shall follow the
traditional choice [6], motivated by the perturbative sta-
bility of unpolarized photon structure functions, where
∆Cq,g are considered in the MS scheme while the desta-
bilizing ∆Cγ term in (2.2), as given by (2.4), is entirely
absorbed [1,6,7] into the MS (anti)quark densities in (2.2)
as implied by the so-called ‘polarized DISγ ’ factorization
scheme, to be denoted by DIS∆γ :

(∆q +∆q̄)γ(P
2)

DIS∆γ
= (∆q +∆q̄)γ(P

2) + e2q
α

π
∆Cγ(x)

∆g
γ(P 2)
DIS∆γ

= ∆gγ(P 2) . (2.5)

This redefinition of parton distributions implies that the
polarized NLO(MS) splitting functions ∆k(1)q,g(x) of the
photon into quarks and gluons, appearing in inhomoge-
neous NLO RG Q2–evolution equations [7] for ∆fγ(P 2)

(x,Q2), have correspondingly to be transformed accord-
ing to [6,8]

∆k(1)q |DIS∆γ = ∆k
(1)
q − e2q ∆P (0)

qq ⊗∆Cγ

∆k(1)g |DIS∆γ
= ∆k(1)g − 2

∑
q

e2q ∆P
(0)
gq ⊗∆Cγ (2.6)

where [7]

∆k(1)q (x) =
1
2
3e2q

4
3

{
−9 lnx+ 8(1− x) ln(1− x)

+27x− 22 + (2x− 1)
[
ln2 x+ 2 ln2(1− x)

−4 lnx ln(1− x)− 2
3
π2
]}

∆k(1)g (x) = 3
∑

q

e2q
4
3
{−2(1 + x) ln2 x

+2(x− 5) lnx− 10(1− x)} (2.7)

with ∆k(1)q referring to each single (anti)quark flavor. The
polarized LO splitting functions are given by ∆P (0)

qq =
4
3

(
1+x2

1−x

)
+
and ∆P (0)

gq = 4
3 (2 − x). The NLO expression

for gγ(P 2)
1,� in the DIS∆γ scheme is thus given by (2.2)

with ∆Cγ(x) being dropped. Since from now on we shall
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exclusively work in this DISγ scheme, we skip the label
‘DIS∆γ ’ on all our subsequent parton distributions and
splitting functions. The leading order (LO) expression for
g

γ(P 2)
1,� is obviously obtained from (2.2) by simply setting
∆Cq,g,γ = 0.
The general solution of the inhomogeneous evolution

equations [7] for ∆fγ(P 2)(x,Q2) may be written as

∆fγ(P 2)(x,Q2) = ∆fγ(P 2)
p� (x,Q2)+∆fγ(P 2)

had (x,Q2) (2.8)

and similarly for gγ(P 2)
1,� (x,Q2) in (2.2). The nonhadronic

‘pointlike’ component ∆fγ(P 2)
p� evolves according to the

full inhomogeneous evolution equations subject to the
boundary condition

∆f
γ(P 2)
p� (x, P̃ 2) = 0 , P̃ 2 = max (P 2, µ2) (2.9)

with µ being some appropriately chosen resolution scale
taken here, in the spirit of the radiative parton model [3],
to be [1,3] µ2NLO(LO) = 0.40 (0.26) GeV

2. The ‘hadronic’
component in (2.8) represents the solution to the conven-
tional homogeneous evolution equations where the photon
splitting functions ∆k(0,1)q,g are dropped. Following [7,9] we
shall study two extreme scenarios for ∆fγ(P 2)

had (x,Q2):
(i) a ‘maximal’ scenario corresponding to a NLO input

∆f
γ(P 2)
had (x, P̃ 2) = η(P 2) fγ

had(x, P̃
2)DISγ,1 (2.10)

where η(P 2) = (1 + P 2/m2
ρ)

−2 is a dipole suppression
factor with m2

ρ = 0.59 GeV
2, and in LO the unpolarized

photonic parton distributions fγ
had(x, P̃

2)LO refer to the
common LO (input) densities as obtained, for example, in
[1];
(ii) a ‘minimal’ scenario corresponding to a NLO input
[10]

∆q
γ(P 2)
had (x, P̃ 2) = η(P 2)e2q

α

2π
[Cγ,1(x)− Cγ,2(x)]

= η(P 2)e2q
α

2π
[−12x(1− x)]

∆g
γ(P 2)
had (x, P̃ 2) = 0 , (2.11)

whereas in LO ∆qγhad(x, P̃
2) also vanishes, due to the ab-

sence of the (unpolarized) NLO coefficient functions Cγ,i,
and thus the input ∆fγ(P 2)(x, P̃ 2)LO = 0 coincides with
the ‘pointlike’ LO solution for ∆fγ(P 2)(x,Q2)LO in (2.8)
with [1] µ2LO = 0.26 GeV

2. Thus this ‘minimal’ scenario
constitutes a genuinely lowest, but possibly unrealistic,
limit for the expected parton distributions of a longitudi-
nally polarized photon.
It should be noticed that the unpolarized NLO inputs

in (2.10) and (2.11) refer to the so–called DISγ,1 factoriza-
tion scheme [10] related to F γ

1 , rather than to F
γ
2 , in or-

der to comply with the fundamental positivity constraint
|Aγ(P 2)

1 | ≡ |gγ(P 2)
1 /F

γ(P 2)
1 | ≤ 1, to which we shall turn in

more detail in the next Section. The unpolarized parton

distributions in the DISγ,1 factorization scheme required
in (2.10) can be easily derived from the ones in the DISγ

scheme [1,6,8], as obtained from an analysis [1] of the data
on F γ

2 , via [10]

qγ(x,Q2)DISγ,1 = q
γ(x,Q2)DISγ − e2q

α

2π
12x(1− x)

gγ(x,Q2)DISγ,1 = g
γ(x,Q2)DISγ

. (2.12)

These boundary conditions are dictated, as in [1], by the
continuity of ∆fγ(P 2)(x,Q2) at P 2 = 0. The hadronic
vector–meson–dominance (VMD) oriented input distribu-
tions of the unpolarized real photon fγ

had(x,Q
2) in (2.10)

will also be taken from [1] for reasons of consistency with
the positivity constraint. These scenarios will be consid-
ered below for our quantitative analyses.
It should be mentioned that our above boundary con-

ditions for the hadronic input in NLO differ substantially
from those considered by Sasaki and Uematsu [11,12] who
consider only the kinematical region Λ2  P 2  Q2 in
contrast to our analysis addressing the full kinematical
region 0 ≤ P 2  Q2 and the ensuing continuity con-
straints at P 2 = 0. More specifically, Sasaki and Uematsu
[11,12] consider on the contrary the perturbatively cal-
culable doubly–virtual polarized box γ∗(Q2)γ(P 2) → qq̄,
following the original treatment of the parton structure
of the unpolarized virtual photon [13], and thus adopt for
∆f

γ(P 2)
had,NLO the following boundary condition at Q

2 = P 2

in the DISγ factorization scheme:

∆q
γ(P 2)
had,NLO(x,Q

2 = P 2) = ∆q̄γ(P
2)

had,NLO(x,Q
2 = P 2)

= 3e2q
α

2π
(2x− 1)

(
ln
1
x2

− 2
)

∆g
γ(P 2)
had,NLO(x,Q

2 = P 2) = 0 . (2.13)

Due to the nonvanishing virtuality (P 2 �= 0) of the tar-
get photon, these results obviously cannot be related any-
more, as in (2.4), to the one of a massless initial on–
shell gluon in (2.3). Apart from excluding the polarized
real (P 2 = 0) photon within this approach, the input in
(2.13) is problematic on its own since kinematically x is
restrained to x ≤ 1

2 at Q
2 = P 2 due to 0 ≤ x ≤ (1 +

P 2/Q2)−1. This latter problem is also faced in the treat-
ment of the partonic structure of a virtual unpolarized
photon as suggested originally in [14]. (The LO bound-
ary conditions are, in contrast to (2.13), obviously given
by ∆fγ(P 2)

had,LO(x,Q
2 = P 2) = 0.) In view of P 2 � Λ2 it is

tacitly assumed in [11,12] that the hadronic VMD input,
(2.10), is negligible. One can, however, also implement a
smooth transition to P 2 = 0 in this approach by multiply-
ing the r.h.s. of (2.13) by, say [15], ζ(P 2) = P 2/(P 2+Q2

0)
where Q2

0 � 1 GeV2, as derived from DIS ep structure
functions, and adding to this part also the VMD hadronic
component in (2.10). Alternatively a smooth transition to
P 2 = 0 may be achieved by multiplying the r.h.s. of (2.13)
by [1− η(P 2)] with η(P 2) as in (2.10), as has been origi-
nally suggested for the unpolarized virtual photon [14].
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Having fixed the boundary (input) conditions, we turn
now to the inhomogeneous RG Q2–evolution equations
which are formally very similar to the ones of an unpo-
larized real photon [6,8], replacing the spin–independent
splitting functions everywhere by their spin–dependent
counterparts [7]. Their LO and NLO solutions can be given
analytically for the Mellin n–moments of ∆fγ(P 2)(x,Q2)
in (2.8):

∆fγ(P 2),n(Q2)

≡
∫ 1

0
dxxn−1∆fγ(P 2)(x,Q2)

= ∆fγ(P 2),n
p� (Q2) +∆fγ(P 2),n

had (Q2). (2.14)

The ‘pointlike’ solution, which vanishes at the input
scale Q2 = P̃ 2 in (2.9), is driven by the LO and NLO
pointlike photon splitting functions ∆k(0,1)q,g appearing in
the inhomogeneous evolution equations, while∆fγ(P 2)

had de-
pends on the hadronic input in (2.10) and evolves accord-
ing to the standard homogeneous evolution equations. The
flavor–singlet solutions for f = 3 flavors, i.e. Q2 ≡ Q2

3 ≤
m2

c , are given by(
∆Σ

γ(P 2),n
p� (Q2

3)

∆g
γ(P 2),n
p� (Q2

3)

)

=
4π

α
(3)
s (Q2

3)

(
1 +

α
(3)
s (Q2

3)
2π

∆Û

)[
1− L

1− 2

β
(3)
0

∆P̂ (0)n

3

]

× 1
1− 2

β
(3)
0

∆P̂ (0)n

α

2πβ(3)0

∆k (0)n +

[
1− L

− 2

β
(3)
0

∆P̂ (0)n

3

]

× 1
−∆P̂ (0)n

α

2π

(
∆k(1)n − β

(3)
1

2β(3)0

∆k(0)n −∆Û∆k(0)n
)

(2.15)(
∆Σ

γ(P 2),n
had (Q2

3)

∆g
γ(P 2),n
had (Q2

3)

)

=

[
L

− 2

β
(3)
0

∆P̂ (0)n

3 +
α
(3)
s (Q2

3)
2π

∆ÛL
− 2

β
(3)
0

∆P̂ (0)n

3

−α
(3)
s (P̃ 2)
2π

L
− 2

β
(3)
0

∆P̂ (0)n

3 ∆Û

](
∆Σ

γ(P 2),n
had (P̃ 2)

∆g
γ(P 2),n
had (P̃ 2)

)
(2.16)

where ∆Σ = Σf (∆q + ∆q̄), ∆k (0) = (∆k(0)Σ , 0)T and
∆k (1) = (∆k(1)Σ , ∆k

(1)
g )T with ∆k(0,1)Σ = 2Σq∆k

(0,1)
q de-

note the inhomogeneous LO and NLO polarized photon
splitting functions into quarks and gluons [7] in (2.6) and
∆k

(0)
q = 1

2 3e
2
q 2[2x− 1]. The 2× 2 matrix ∆Û is, in com-

plete analogy to the unpolarized case [6], expressed in
terms of the usual 2×2 matrices of the polarized one– and
two–loop splitting functions ∆P̂ (0)n and ∆P̂ (1)n which
have been presented in [16] and from where also the n–
moments of the coefficient functions in (2.3) and (2.4)

can be obtained. The input distributions∆fγ(P 2),n
had (P̃ 2) in

(2.16) are given by (2.10) and L3 ≡ α
(f=3)
s (Q2

3)/α
(3)
s (P̃ 2).

For 0 ≤ P 2 ≤ µ2 one of course has to freeze α(3)s (P̃ 2)
at P̃ 2 = µ2 in order to comply with the LO and NLO
boundary conditions in (2.10).
Evoluting beyond the MS ‘threshold’Q3 = mc, one has

to take into account f+1 = 4 active flavors in α(f+1)s (Q2)
at Q2 ≡ Q2

4 > m2
4 ≡ m2

c and where the results obtained
in (2.15) and (2.16) at Q2

3 serve as input for the hadronic
component of the full solution in (2.14). In this way we ar-
rive at the following general form of solutions which holds,
in an obvious way, for any active number of flavors, i.e.
m4 < Q4 ≤ m5 ≡ mb as well as for m5 < Q5 ≤ m6 ≡ mt:(

∆Σ
γ(P 2),n
p� (Q2

f+1)

∆g
γ(P 2),n
p� (Q2

f+1)

)

=
4π

α
(f+1)
s (Q2

f+1)

[
1− L

1− 2

β
(f+1)
0

∆P̂ (0)n

f+1

]

× 1
1− 2

β
(f+1)
0

∆P̂ (0)n

α

2πβ(f+1)0

∆k (0)n

+

[
1− L

− 2

β
(f+1)
0

∆P̂ (0)n

f+1

]
1

−∆P̂ (0)n

α

2π

×
(
∆k(1)n − β

(f+1)
1

2β(f+1)0

∆k(0)n −∆Û∆k(0)n
)

(2.17)

(
∆Σ

γ(P 2),n
had (Q2

f+1)

∆g
γ(P 2),n
had (Q2

f+1)

)

=

[
L

− 2

β
(f+1)
0

∆P̂ (0)n

f+1 +
α
(f+1)
s (Q2

f+1)
2π

∆ÛL
− 2

β
(f+1)
0

∆P̂ (0)n

f+1

− α
(f+1)
s (m2

f+1)
2π

L
− 2

β
(f+1)
0

∆P̂ (0)n

f+1 ∆Û

]

×
(
∆Σ

γ(P 2),n
p� (m2

f+1) + ∆Σ
γ(P 2),n
had (m2

f+1)

∆g
γ(P 2),n
p� (m2

f+1) + ∆g
γ(P 2),n
had (m2

f+1)

)
(2.18)

where Lf+1 ≡ α
(f+1)
s (Q2

f+1)/α
(f+1)
s (m2

f+1) and it should
be noted that the ‘pointlike’ solution is always such that it
vanishes, per definition, at each Qf+1 = mf+1, as in (2.9)
and (2.15) at Q2 ≡ Q2

3 = P̃
2. (Similar solutions have been

used for calculating the parton content of unpolarized pho-
tons [6,14]). The evolution of α(f)s (Q2), corrresponding to
a number of f active flavors, is obtained by exactly solving
in NLO(MS)

dα
(f)
s (Q2)
d lnQ2 = −β

(f)
0

4π

[
α(f)s (Q2)

]2
− β

(f)
1

16π2
[
α(f)s (Q2)

]3
(2.19)

numerically [3] using α(5)s (M2
Z) = 0.114, rather than using

the more conventional approximate solution
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α
(f)
s (Q2)
4π

� 1

β
(f)
0 ln(Q2/Λ2)

− β
(f)
1

(β(f)0 )3
ln ln(Q2/Λ2)
[ln(Q2/Λ2)]2

(2.20)
which becomes sufficiently accurate only for Q2 >∼ m2

c � 2
GeV2 with [3] Λ(f=4,5,6)

MS
= 257, 173.4, 68.1 MeV, whereas

in LO (β1 ≡ 0) Λ(4,5,6)LO = 175, 132, 66.5 MeV. Further-
more, β(f)0 = 11 − 2f/3 and β(f)1 = 102 − 38f/3. For the
αs matchings at the MS ‘thresholds’ Q ≡ Qf = mf , i.e.
α
(f+1)
s (m2

f+1) = α
(f)
s (m2

f+1), we have used [3] mc = 1.4
GeV, mb = 4.5 GeV and mt = 175 GeV. On the other
hand, we fix f = 3 in the splitting functions ∆P (0,1)

ij in
(2.17) and (2.18) for consistency since we treat the heavy
quark sector (c, b, . . .) by the perturbatively stable full pro-
duction cross sections in fixed–order perturbation theory,
i.e. γ∗(Q2)γ(P 2)→ cc̄ and γ∗(Q2)gγ(P 2) → cc̄, etc., keep-
ing mc �= 0 as will be discussed below.
For the flavor–nonsinglet case the (matrix) solutions in

(2.15)–(2.18) reduce to simple equations for ∆Σγ(P 2) →
∆q

γ(P 2)
NS with ∆k n → ∆kn

NS [7] and ∆Û → ∆UNS ex-
pressed in terms of ∆P (0)n

NS and ∆P (1)n
NS [6,16].

The LO results are of course entailed in the above ex-
pressions by simply dropping all the obvious higher order
terms (β1, ∆k(1)n, ∆U).
We shall also compare our quantitative results with the

ones based on the virtual box input (2.13) as suggested in
[11,12] for Λ2  P 2  Q2. Therefore it is also useful
to recall the expression for the n–moment, as defined in
(2.14), of the ‘box’ ∆qγ(P

2)
had,NLO(x, P

2) in (2.13):

∆q
γ(P 2),n
had,NLO = 3 e

2
q

α

2π

[
2
n

− 4
n+ 1

− 2
n2
+

4
(n+ 1)2

]
.

(2.21)
All the above solutions and expressions in Mellin n–

moment space can be easily converted into the desired
Bjorken–x space by utilizing a numerical Mellin–inversion
as described, for example, in [6].
Finally, the heavy quark (h = c, b, . . .) contribution

g
γ(P 2)
1,h to gγ(P 2)

1 (x,Q2), as mentioned at the beginning,
consists of two contributions, the ‘direct’ one and a ‘re-
solved’ one. The ‘direct’ contribution derives [17] from the
polarized box diagram γ∗(Q2)γ → hh̄, where the polarized
virtual target photon has to be treated as a real polarized
photon γ ≡ γ(P 2 = 0) in order to comply with our conti-
nuity condition at P 2 = 0,

gdir1,h(x,Q
2) = 3 e4h

α

2π
θ(β2)

×
[
(2x− 1) ln 1 + β

1− β + β(3− 4x)
]
(2.22)

where β2 = 1 − 4m2
h/W

2 = 1 − 4m2
hx/(1 − x)Q2 and

h = c, b, t. The ‘resolved’ contribution derives from the
polarized subprocess γ∗(Q2)g → hh̄ and is given by [18,
19]

Fig. 1. Typical LO and NLO(DIS∆γ) expectations for the
parton densities of a real (P 2 = 0) and virtual polarized photon
at a common scale of Q2 = 10 GeV2, which follow from our
‘maximal’ and ‘minimal’ input scenarios in (2.10) and (2.11),
respectively

gres1,h(x,Q
2) =

∫ 1

ymin

dy

y
∆gγ(P 2)(y, µ2F )ĝ

γ∗g→hh̄
1,h

(
x

y
,Q2

)
(2.23)

where ĝγ∗g→hh̄
1,h (x,Q2) is given by (2.22) with e4hα → e2h

αs(µ2F )/6, ymin = x(1 + 4m2
h/Q

2) and µ2F � 4m2
h. These

contributions add up to gγ(P 2)
1,h = gdir1,h + g

res
1,h. We state

these LO results for completeness despite the fact that the
NLO corrections have not yet been calculated and that the
heavy quark (charm) contribution will be immaterial for
our more illustrative quantitative purposes.

3 Quantitative results

Typical LO and NLO maximal and minimal expectations
for ∆uγ(P 2)(x,Q2) and ∆gγ(P 2)(x,Q2) for real and vir-
tual polarized photons at Q2 = 10 GeV2 are shown in
Figs. 1 and 2 which follow from our ‘maximal’ input sce-
nario in (2.10) and the ‘minimal’ input scenario in (2.11)
which in LO is identical to the ‘pointlike’ solution in (2.8)
as given by (2.15) and (2.17). Due to the hadronic com-
ponent (2.10) in (2.8), the difference between the ‘max-
imal’ and ‘minimal’ scenario is of course very large for
medium and small values of x for a real (P 2 = 0) pho-
ton, whereas this difference almost disappears already for
P 2 = 1 GeV2, except for ∆gγ(P 2) at very small x in Fig. 2,
due to the suppression of the hadronic contribution by the
dipole factor η(P 2) in (2.10) and (2.11). Also noteworthy
is the perturbative LO/NLO stability of ∆fγ(P 2)(x,Q2)
which seems to hold in the large and small x–region as
exemplified in Figs. 1 and 2. Thus, for P 2 >∼ 1 GeV2, the



276 M. Glück et al.: Spin-dependent structure functions of real and virtual photons

Fig. 2. Same as in Fig. 1 but plotted for a logarithmic x–scale
in order to illustrate the small–x structure of the polarized
distributions

Fig. 3. The predicted Q2–dependence of ∆uγ(P2)(x, Q2) in
NLO(DIS∆γ) at various fixed values of the virtuality P 2 ac-
cording to the ‘maximal’ and ‘minimal’ input scenarios in
(2.10) and (2.11), respectively. For P 2 = 1 GeV2 the results at
Q2 = 2 GeV2 are, for obvious reasons, not displayed anymore

structure functions of longitudinally polarized virtual pho-
tons are expected to be dominated by the perturbatively
uniquely calculable ‘pointlike’ contribution. The predicted
Q2–dependence at various fixed values of the virtuality P 2

is depicted in Figs. 3 and 4. The resulting polarized struc-
ture function gγ(P 2)

1 (x,Q2) is shown in Fig. 5 at some typ-
ical scales Q2 and virtualities P 2, with the kinematical
constraint x ≤ Q2/(Q2 + P 2) taken into account. For il-
lustration we also display the ‘direct’ heavy quark (charm)
contribution according to (2.22), whereas the ‘resolved’
contribution in (2.23) is much smaller at the scales con-
sidered.
We also compared our quantitative results with the

ones based on the virtual box input (2.13), or (2.21), as
studied by Sasaki and Uematsu [11,12] for P 2 � Λ2. Al-
though we fully confirm quantitatively their NLO results

Fig. 4. As Fig. 3 but for ∆gγ(P2)(x, Q2) in NLO

Fig. 5. The resulting NLO predictions of the polarized struc-
ture function g

γ(P2)
1,� (x, Q2) for the light u, d, s quarks as de-

fined in (2.2), according to the ‘maximal’ and ‘minimal’ input
scenarios in (2.10) and (2.11), respectively. Notice that the
virtual photon structure function is kinematically constrained
within 0 ≤ x ≤ (1 + P 2/Q2)−1. For comparison the charm
contribution at Q2 = 10 GeV2 is shown as well according to
the ‘direct’ box expression (2.22) using mc = 1.4 GeV. The
‘resolved’ contribution in (2.23) is marginal in the kinematic
region considered

[12] for ∆qγ(P
2)(x,Q2) and ∆gγ(P 2)(x,Q2), we disagree

even with their corrected ones [12] for gγ(P 2)
1,� (x,Q2), de-

spite the fact that we agree with their analytic expressions
for gγ(P 2)

1,� (x,Q2) as given, for example, by (3.16) of [11].
This discrepancy is illustrated in Fig. 6 where, following
[11,12], the Q2–evolution has been performed for fixed
f = 3 flavors, using Λ = 0.2 GeV. (Notice that there is
a trivial overall normalization difference due to the com-
mon factor of 1

2 on the r.h.s. of (2.2) which has not been
adopted in [11,12]).
Next we turn to a comparison of our polarized struc-

ture functions with the rather well established unpolarized
ones of real as well as of virtual photons. The fundamental
positivity constraint |∆σ| ≤ σ always refers to the exper-
imentally measurable cross sections or, in other words, to
the directly measurable structure functions, i.e.

|gγ(P 2)
1 (x,Q2)| ≤ F

γ(P 2)
1 (x,Q2) , (3.1)

implying |Aγ(P 2)
1 | ≡ |gγ(P 2)

1 /F
γ(P 2)
1 | ≤ 1. Here F γ(P 2)

1 (not
F

γ(P 2)
2 ) is the spin–averaged analog of the spin–dependent
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Fig. 6. The polarized virtual photon structure function
g

γ(P2)
1,� (x, Q2) for the f = 3 light quark flavors at Q2 =
30 GeV2 and P 2 = 1 GeV2 � Λ2, where N =
(3/2)

∑
q e4

q(α/π) ln(Q2/P 2) with
∑

q e4
q = 2/9. Our NLO re-

sult is compared with the one presented in the second reference
of [12]

g
γ(P 2)
1 in (2.2):

F
γ(P 2)
1,� (x,Q2)

=
1
2

∑
q=u,d,s

e2q

{
qγ(P

2)(x,Q2) + q̄ γ(P 2)(x,Q2)

+
αs(Q2)
2π

[
Cq,1 ⊗ (q + q̄)γ(P 2) + 2Cg,1 ⊗ gγ(P 2)

]

+2 e2q
α

2π
Cγ,1(x)

}
(3.2)

with q = q+ + q− and g = g+ + g− as compared to the
spin–dependent ∆q = q+ − q− and ∆g = g+ − g− in (2.2)
in terms of the positive and negative helicity densities q±
and g±. The NLO coefficient functions in (3.2) refer, as in
(2.2), to the MS factorization scheme and are given by

Cq,1(x) = Cq,2(x)− 4
3
2x

=
4
3

[
(1 + x2)

(
ln(1− x)
1− x

)
+

− 3
2

1
(1− x)+

−1 + x
2

1− x lnx+ 3−
(
9
2
+
π2

3

)
δ(1− x)

]

Cg,1(x) = Cg,2(x)− 1
2
4x(1− x)

=
1
2

{[
x2 + (1− x)2] ln 1− x

x
+ 4x(1− x)− 1

}

Cγ,1(x) =
3

(1/2)
Cg,1(x) (3.3)

which have been used in (2.11). The DISγ,1 factorization

scheme [10] associated with F γ(P 2)
1,� and used in the previ-

ous Section is then obtained by absorbing again the entire
‘direct’ Cγ,1 term in (3.2) into the MS quark densities
qγ(P

2) = q̄ γ(P 2):

(q + q̄)γ(P
2)

DISγ,1
= (q + q̄)γ(P

2) + e2q
α

π
Cγ,1(x)

g
γ(P 2)
DISγ,1

= gγ(P 2) , (3.4)

in complete analogy to the definition of the polarized
DIS∆γ factorization scheme in (2.5). Again, this redefini-
tion of parton distributions implies that the unpolarized
NLO(MS) splitting functions k(1)q,g(x) of the photon into
quarks and gluons, appearing in the inhomogeneous NLO
Q2–evolution equations [6] for fγ(P 2)(x,Q2), have to be
transformed according to [6,8]

k(1)q |DISγ,1 = k
(1)
q − e2qP (0)

qq ⊗ Cγ,1

k(1)g |DISγ,1 = k
(1)
g − 2

∑
q

e2qP
(0)
gq ⊗ Cγ,1 (3.5)

similarly to (2.6), where the k(1)q,g(x) can be found, for ex-
ample, in [8,10], and P (0)

qq = ∆P (0)
qq and P (0)

gq = 4
3 [1 + (1−

x)2]/x. The NLO expression for F γ(P 2)
1,� in the DISγ,1

scheme is thus given by (3.2) with Cγ,1 being dropped.
The relevant DISγ,1 parton distributions are obtained via
(2.12) from the ones in the DISγ scheme [1] as derived
from an analysis of the data on F γ

2 (x,Q
2). The results

at Q2 = 10 GeV2 are shown in Fig. 7 for a real photon
(P 2 = 0) and a virtual one with P 2 = 1 GeV2, and are
compared with the polarized structure function gγ(P 2)

1,� for
our ‘maximal’ and ‘minimal’ scenario. For both cases these
NLO results are in agreement [10] with the positivity con-
straint (3.1) which, moreover, is trivially satisfied in LO
[10]. This is also illustrated in Fig. 8 where, for complete-
ness, we present the asymmetry Aγ(P 2)

1 ≡ g
γ(P 2)
1,� /F

γ(P 2)
1,�

in LO and NLO.
The corresponding asymmetries for the (un)polarized

parton distributions, Aγ(P 2)
f ≡ ∆fγ(P 2)/fγ(P 2), are de-

picted in Figs. 9 and 10 in LO and NLO. In LO, where
cross sections (structure functions) are directly related to
parton densities, the positivity constraint (3.1) for struc-
ture functions implies

|∆fγ(P 2)(x,Q2)| ≤ fγ(P 2)(x,Q2) (3.6)

which is clearly satisfied, |Aγ(P 2)
u,g | ≤ 1, as shown in Figs. 9

and 10 by the dashed curves. At NLO, however, a simple
relation between parton distributions and cross sections
no longer holds. Parton distributions are renormalization
and factorization scheme dependent quantities; although
universal, they are not directly observable, i.e. measur-
able. Hence there are NLO contributions which may vio-
late (3.6) in specific cases [10,20]. Such a curiosity occurs
for the photonic parton distributions which, for medium
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Fig. 7. The unpolarized and polarized structure functions
F

γ(P2)
1,� (x, Q2) and g

γ(P2)
1,� (x, Q2) in NLO for the three light

u, d, s quarks as defined in (3.2) and (2.2), respectively.
F

γ(P2)
1,� has been calculated according to the analysis of [1].

The results for the polarized structure function g
γ(P2)
1,� refer to

the ‘maximal’ and ‘minimal’ scenarios in (2.10) and (2.11),
respectively. The Bjorken–x is kinematically constrained by
x ≤ (1 + P 2/Q2)−1

Fig. 8. The spin asymmetries A
γ(P2)
1 (x, Q2) ≡ g

γ(P2)
1,� /F

γ(P2)
1,�

in LO and NLO for the ‘maximal’ and ‘minimal’ scenario for
g

γ(P2)
1,� . The NLO results are of course directly related to the
ones of Fig. 7

to large values of x, are dominated by the photon’s split-
ting functions (∆)kq,g appearing as inhomogeneous terms
in the RG Q2–evolution equations [6–8]. Up to NLO they
are given by

(∆)ki(x,Q2) =
α

2π
(∆)k(0)i (x) +

ααs(Q2)
(2π)2

(∆)k(1)i (x)

(3.7)
where in LO (∆)k(0)q = 1

2 3 e
2
q 2
[
x2 +

(−)(1− x)2
]
, (∆)k(0)g =

0 and the NLO polarized (two–loop) ∆k(1)q,g are given in
(2.7) and the unpolarized k(1)q,g are as in (3.5). Our NLO
results for ∆uγ(P 2) and ∆dγ(P 2) still satisfy the positivity

Fig. 9. The up–quark spin asymmetry A
γ(P2)
u (x, Q2) ≡

∆uγ(P2)/uγ(P2) with ∆uγ(P2)(x, Q2) being calculated accord-
ing to the ‘maximal’ and ‘minimal’ scenarios in (2.10) and
(2.11), respectively, and the unpolarized uγ(P2)(x, Q2) is cal-
culated according to the DISγ results of [1] using (2.12). The
polarized NLO distributions refer to the DIS∆γ factorization
scheme defined in (2.5), whereas the unpolarized NLO distri-
butions are calculated in the DISγ,1 scheme as defined in (3.4)

Fig. 10. As in Fig. 9 but for the gluon spin asymmetry
A

γ(P2)
g (x, Q2) ≡ ∆gγ(P2)/gγ(P2)

constraint (3.6) as demonstrated by the solid curves for
A

γ(P 2)
u in Fig. 9 since in LO |∆k(0)q | ≤ k

(0)
q despite the fact

that the subleading NLO contributions in (3.7) in general
violate |∆k(1)q /k

(1)
q | ≤ 1. The NLO gluon distributions,

however, violate (3.6) because of the vanishing of the LO
terms (∆)k(0)g = 0 and the now dominant NLO terms
(∆)k(1)g in (3.7) violate |∆k(1)g /k

(1)
g | ≤ 1. This violation

[10] of the NLO gluon ‘positivity’ is illustrated by the solid
curves in Fig. 10 for Aγ(P 2)

g where Aγ(P 2)
g > 1 for x >∼ 0.6

and 0.7 – 0.85 for the ‘maximal’ and ‘minimal’ scenario,
respectively.
Finally it should be mentioned that sum rules for the

first (n = 1) moment of gγ(P 2)
1 have been derived for a real

(P 2 = 0) [21,22] and truly virtual (P 2 � Λ2) [22] polar-
ized photon. Since our gγ(P 2)

1,� (x,Q2) of a virtual photon in
(2.2) refers to splitting and coefficient functions of on–shell
partons and (real) photons, as dictated by our continuity
condition at P 2 = 0, it is the real–photon sum rule [21,
22] that matters in our case,

∫ 1

0
dx g

γ(P 2)
1,� (x,Q2) = 0 , (3.8)
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which derives from current conservation. Since this sum
rule is maintained for all Q2 as can be shown by inspecting
[11,12] the relevant LO and NLO evolution kernels and
coefficient functions in (2.2) and (2.15) – (2.18) for n = 1,
in particular the vanishing of the n = 1 moment of ∆Cγ in
(2.4), it can be realized by demanding at the input scale
Q2 = P̃ 2

∆qγ(P
2),n=1(P̃ 2) = 0 , (3.9)

whereas the photonic gluon distribution remains uncon-
strained. Our LO ‘minimal’ scenario in (2.11), which cor-
responds just to the ‘pointlike’ solution in (2.8), obviously
satisfies (3.9) because of (2.9). On the other hand one
could rather easily enforce artificially [9] the vanishing of
the n = 1 moment of ∆qγ(P

2)
had (x, P̃ 2) in the ‘maximal’

scenario (2.10) as well as of the NLO ‘minimal’ input in
(2.11), but in view of our present complete ignorance of
the hadronic component of a polarized photon we refrain
from doing that. Since our quantitative speculations refer
here mainly to, say, x >∼ 10−2, the current conservation
constraint (3.9) for the non–vanishing inputs could be ac-
counted for by contributions from smaller x which do not
affect of course the evolutions at larger x.
For completeness it should also be mentioned that for

the truly virtual region Λ2  P 2  Q2, i.e. if one disre-
gards the continuity to P 2 = 0, the sum rule (3.8) gets
replaced by the relation [22,11,12]∫ 1

0
dx g

γ(P 2)
1,� (x,Q2) = 0− 3α

2π

∑
q=u,d,s

e4q +O (ααs(Q2)
)

(3.10)
where the LO −O(α/αs) contribution vanishes and the
finite NLO−O(α) term derives essentially from the n =
1 moment of the polarized doubly–virtual ‘box’ γ∗(Q2)
γ(P 2) → qq̄ in (2.13) to gγ(P 2)

1,� in (2.2), cf. (2.21). The
NNLO–O(ααs) contribution in (3.10) has been calculated
as well in [22,11,12]. (It should be noted that different
normalization and sign conventions for g1 have been used
in these latter references.) Again, this P 2 � Λ2 approach
could be smoothly extrapolated to P 2 = 0, where the
sum rule (3.8) holds, by multiplying the r.h.s. of (3.10) by
a form factor like [15,22] ζ(P 2) = P 2/(P 2 + Q2

0), as has
already been discussed after (2.13), where Q2

0 � 1 GeV2,
i.e. tpyically [22] Q2

0 = O(m2
ρ).

4 The nonresummed QED ‘box’ contribution

An interesting question concerning the photon structure
functions is where the effects due to the RG resumma-
tion actually show up. This question was studied for the
unpolarized photon in [23] by comparing the contribu-
tion of the non–resummed QED ‘box’ cross sections for
γ∗(Q2)γ(P 2) → qq̄ to their QCD RG–improved counter-
parts.
In the present context this amounts to comparing

g
γ(P 2)
1,� (x,Q2)box, as derived from the longitudinally po-

larized ‘box’ subprocess γ ∗(Q2)γ(P 2) → qq̄, with gγ(P 2)
1,�

(x,Q2) as evaluated according to the prescriptions in
Sect. 2. The general polarized doubly–virtual box result
for the colored three light q = u, d, s quarks (mq = 0) is
given by [17]

2gγ(P 2)
1,� (x,Q2)box

= 3

(∑
q

e4q

)
α

π

1
β̄5

{
(2x− 1)(1− 2δ) ln 1 + β̄

1− β̄
+β̄ [2− 4x(1− 2δ)− 4δ]− 8δx(1− x− δ)
×
[
2δx ln

1 + β̄
1− β̄ − β̄

]}
(4.1)

where δ = xP 2/Q2 and β̄2 = 1 − 4xδ. It should be no-
ticed that the third term proportional to −8δx . . . does
not have any partonic interpretation since it corresponds
to spin–flip transitions for each of the photons with total
helicity conservation, i.e. it derives from the combination
of helicity amplitudes [17] W++,00 −W0+,−0 with Wa′b′,ab

for the transition ab → a′b′. (We have corrected for a sign
misprint in (E.1) of [17] which results in −β̄ in the last
term in (4.1) .)
It is instructive to recall the asymptotic result of our

polarized virtual (P 2 �= 0) box expression derived from
(4.1) in the Bjorken limit Q2 � P 2:

2gγ(P 2)
1,� (x,Q2)box � 3

(∑
q

e4q

)
α

π

{
(2x− 1) ln Q

2

P 2

+(2x− 1)
(
ln
1
x2

− 2
)}

(4.2)

where the appropriate ‘finite’ contribution has been al-
ready used in (2.13). The universal process independent
part of this pointlike box expression proportional to lnQ2/
P 2 may be used to define formally, as in the case of an
unpolarized photon [23,24], light (anti)quark distributions
in the polarized photon γ(P 2):

2gγ(P 2)
1,� (x,Q2)box|univ.

≡
∑

q=u,d,s

e2q

[
∆q

γ(P 2)
box (x,Q2) +∆q̄γ(P

2)
box (x,Q2)

]
(4.3)

with

∆q
γ(P 2)
box (x,Q2) = ∆q̄ γ(P 2)

box (x,Q2)

= 3 e2q
α

2π
(2x− 1) ln Q

2

P 2 . (4.4)

It should be noted that these naive, i.e. not QCD-re-
summed, box expressions do not imply a gluon component
in the polarized photon, ∆gγ(P 2)

box (x,Q2) = 0.
Furthermore, in order to demonstrate the importance

of O(P 2/Q2) power corrections in the large P 2 region for
photonic quark distributions, it is sometimes also useful
[23] to define, generalizing the definition (4.3), some ‘effec-
tive’ non–universal (anti)quark distributions as common
via
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Fig. 11. Comparing the LO QCD–resummed total polarized
light quark distribution ∆Σγ(P2)(x, Q2) ≡ 2

∑
q=u,d,s ∆qγ(P2)

and the polarized gluon distribution ∆gγ(P2)(x, Q2) in the
‘maximal’ and ‘minimal’ scenario with the naive universal ‘box’
results defined in (4.4), and with the ‘effective’ distributions de-
rived from (4.5). Notice that it is the quantity (11/4)∆gγ(P2),
which appears in the effective polarized parton density in (4.6),
that will be directly accessible by future experiments

2gγ(P 2)
1,� (x,Q2)box

≡
∑

q=u,d,s

e2q

[
∆q

γ(P 2)
eff (x,Q2) +∆q̄ γ(P 2)

eff (x,Q2)
]
(4.5)

where, of course, ∆qγ(P
2)

eff = ∆q̄ γ(P 2)
eff and the full box ex-

pression for gγ(P 2)
1,box is given by (4.1). The full box expres-

sion implies again ∆gγ(P 2)
eff (x,Q2) = 0 in contrast to the

QCD resummed finite gluon distribution ∆gγ(P 2)(x,Q2).
Our QCD–resummed total light quark distribution

∆Σγ(P 2)(x,Q2) ≡ 2∑q=u,d,s ∆q
γ(P 2)(x,Q2) is compared

in Fig. 11 with the corresponding universal ‘box’ expec-
tation according to (4.4) and with the ‘effective’ densities
as defined in (4.5) which indicate the relevance of possi-
ble O(P 2/Q2) terms. In particular in the small x region,
x <∼ 0.3, these latter two distributions differ significantly
from the QCD resummed one. Furthermore the polarized
gluon distribution, which does not exist within the box–
approach, becomes comparable to ∆Σγ(P 2) below x <∼ 0.5
and dominates, as ususal, in the small–x region, as in the
case of an unpolarized virtual photon [23]. Thus it should
be possible to distinguish between the naive box expecta-
tions and the QCD RG–improved parton distributions of
a polarized photon with future dijet production measure-
ments in polarized deep inelastic ep experiments. Here
the production rates will, in LO, be related to an effective
polarized parton density [25]

∆f̃γ(P 2)(x,Q2)

=
∑

q=u,d,s

[
∆qγ(P

2)(x,Q2) +∆q̄ γ(P 2)(x,Q2)
]

+
11
4
∆gγ(P 2)(x,Q2) , (4.6)

with a similar relation for the proton ∆f̃p(x,Q2) which
is assumed to be known. This equation is the polarized

Fig. 12. Comparing the LO– and NLO–QCD results for the
polarized structure function g

γ(P2)
1,� (x, Q2) for the light u, d, s

quarks for the ‘maximal’ and ‘minimal’ input scenarios in
(2.10) and (2.11) with the expectations due to the ‘full box’ in
(4.1) and its ‘asymptotic box’ approximation given in (4.2) for
Q2 � P 2

counterpart of a similar relation extracted from unpolar-
ized subprocesses [26] as utilized [27] for calculating the
high–pT dijet production rates in unpolarized ep collisions.
Finally we compare in Fig. 12 our QCD RG–improved

predictions for the polarized structure functions gγ(P 2)
1,� (x,

Q2) for the light u, d, s quarks, to be measured in polar-
ized e+e − → e+e−X experiments, with the expectations
of the naive box results in (4.1) and (4.2). Evidently, differ-
ences between these expectations may be experimentally
discernible only in the small–x region, x <∼ 0.2.

5 Summary

The presently unknown parton distributions, ∆fγ(P 2)(x,
Q2), of the polarized real and virtual photon were studied
in LO and NLO within the context of two extreme scenar-
ios for their inputs at some low resolution scale. In par-
ticular it was shown how one may reasonably implement
the physical requirement of their continuity at P 2 = 0
in the nontrivial case of a NLO analysis. The extreme
‘maximal’ and ‘minimal’ saturation scenarios are defined
in NLO via (2.10) and (2.11), respectively, where the
choice of the DISγ,1 factorization scheme in (2.10) as well
as the content of (2.11) were dictated by the positivity
constraint |gγ(P 2)

1 (x,Q2)| ≤ F
γ(P 2)
1 (x,Q2). The hadronic

input in (2.10) is obtained from an analysis [1] of the un-
polarized real photon data on F γ

2 (x,Q
2) via the relation

(2.12).
Finally we compare in Figs. 11 and 12 the QCD re-

summed predictions of the ‘maximal’ and ‘minimal’ satu-
ration models with results obtained within the framework
of a simple non–resummed quark ‘box’ γ∗(Q2)γ(P 2)→ qq̄
calculation (where a gluon distribution in γ(P 2) does not
exist), expected to yield reasonable estimates in the not
too small regions of x and P 2.
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